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Controllable spin-current blockade in a Hubbard chain
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We investigate the spin or charge transport in a one-dimensional strongly correlated system by using the
adaptive time-dependent density-matrix renormalization-group method. The model we consider is a non-half-
filled Hubbard chain with a bond of controllable spin-dependent electron hoppings, which is found to cause a
blockade of spin current with little influence on charge current. We have considered (1) the spread of a wave
packet of both spin and charge and (2) the spin and charge currents induced by a spin-dependent voltage bias.
It is found that the spin-charge separation plays a crucial role in the spin-current blockade, which may be

utilized to observe the spin-charge separation directly.
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In one-dimensional (1D) strongly correlated systems, an
essential phenomenon is the spin-charge separation (SCS),!
which is believed to play a central role in 1D transport.” To
study transport problems in 1D systems, the characteristics
of SCS must be taken into account. However, due to the
limitations of existing methods, the discussion in the past has
been limited to a few simple cases; an example is the signifi-
cant work by Kane and Fisher® on scaling properties of tun-
neling through a spin-symmetric point impurity in a fermion
system. Hence more powerful methods are needed to com-
pute transport properties beyond scaling and to treat a gen-
eral interacting Hamiltonian. Furthermore, spin-dependent
transport problems have attracted increasing interest in the
last two decades; many proposed spintronics devices*> re-
quire the manipulation of spin currents, which are naturally
decoupled from charge currents in 1D systems. On the other
hand, a number of experimental works have sought to ob-
serve the phenomenon.® Rapid progress in ultracold atomic
gas experiments”® makes it possible to see SCS in a new
context.’

Recently, the adaptive time-dependent density-matrix
renormalization group (t-DMRG) (Refs. 10 and 11) was de-
veloped by combining the DMRG method!? with quantum
information concepts. The key idea of this method is to break
up the evolution operator with Trotter decomposition,'? then
apply it to the states within a DMRG configuration. With the
method as well as other real-time evolution ones within
DMRG, there have been a number of investigations on trans-
port properties in 1D strongly correlated or impurity systems,
including spin-1/2 chains,'* Bose-Hubbard model,'> and
quantum switch.'® The dynamical problems with impurities
were also studied widely using static DMRG method embed-
ding with persistent current!”!® and functional renormaliza-
tion group.'®!” An interesting result that partly motivates our
study was the study of SCS by Kollath et al.?° In conven-
tional treatment with the bosonization method, only low-
energy excitations were considered. The above study goes
beyond the low-energy excitation spectrum by considering
the evolution of a “big” (multiparticle) wave packet that
shows the SCS phenomenon.?”

In this Brief Report, we propose to consider a non-half-
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PACS number(s): 73.23.Hk, 71.10.Fd, 71.10.Pm, 72.25.—b

filled Hubbard chain in which one special bond has control-
lable spin-dependent electronic hoppings, motivated both by
the development of optical lattices of ultracold atoms in
which all hoppings can be controlled and the need to control
spin currents for the application in spintronics. By using the
adaptive t-DMRG method, we simulate the spread of a wave
packet as well as the spin and charge currents under a spin-
dependent voltage bias. The most significant result we find is
that the spin-current blockade can be realized by adjusting
the spin-dependent hopping on that special bond while the
charge current has not been affected.

The system we are considering is described by the follow-
ing Hamiltonian:

+
HS=_2tZ'i+1(Ci,a'ci+l,a'+ hC)+UZ ni’Tni’l, (1)
i,0 i

where czl,(ciyc) creates (annihilates) an electron with spin
o(=1,]) on the ith site, n,-,(,(Ecigc,-,(,) is the corresponding
electron number operator, the hopping constants ¢, | =, on
all bonds but a special bond (i=1;), where ¢, ,(=t,) is an
adjustable spin-dependent quantity, which introduces a local
magnetic moment, like a spin-dependent Anderson impurity.
Without the special bond, the Hamiltonian is nothing but the
usual 1D Hubbard model with U(>0) being the on-site re-
pulsive Coulomb interaction. Without loss of generality, we
keep t,=1, while 7| is adjusted from #, to 0. Although there
has been some similar scheme on the spin-dependent
impurity,'® we present a possible proposal in Fig. 1 on the
realization of this model in an optical lattice. In the lattice,
the spin-up and spin-down atoms could be trapped in a pair
of parallel period potential wells created by interfering
linear-polarized laser beams.® Hence, one might change the
laser beam to rotate half of spin-down atoms around the
spin-up atom axis by an angle 6, which reduces the spin-
down atom hopping at the special bond. It is clear that 7| of
this special bond in Eq. (1) could be easily adjusted by
changing 6.2!

In the following, we will apply the t-DMRG method with
second-order Trotter decomposition to simulate the dynami-
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FIG. 1. (Color online) The realization of a Hubbard chain with a
special bond of controllable spin-dependent electronic hopping in
an optical lattice. The rotation of the left spin-down atoms around
the spin-up atom axis reduces the spin-down atom hopping at the
special bond, i.e., the 7, in Eq. (1) decreases as the angle 6
increases.

cal evolution. The number of sites (L) is always taken to be
176 while the number of electrons (N,) is 116; the corre-
sponding filling factor [N,/(2L)] is about 1/3, so the system
is at Luttinger liquid phase. The time step is taken as 0.04 (in
unit of #/f,) and the number of kept DMRG states (M) is
chosen to be large enough to ensure the error being less than
O(107%). The spin and charge currents, the quantities we fo-
cus on in this calculation, are defined as J.(j)
=J,(j) =J,(j), where

o) = it] 1 {e] ot 0= it o) (2)

First, we consider the spread of a wave packet as done by

Kollath ef al.,?° but in a Hubbard chain with a bond of con-

trollable spin-dependent electron hoppings, described by Eq.

(I). The wave packet is induced by the spin-dependent
Gaussian potential

—(i-1,)|.
HP=—P2 exp[Fp— it (3)
i d

which acts only on the spin-up electrons, so that it carries
both of spin and charge. Then the potential will be switched
off and the wave packet will be spread according to the time-
dependent many-body Schrodinger equation. Clearly P de-
termines the potential strength, l,, the center of the induced
wave packet, and [, its width.

In Fig. 2, we show the spin and charge currents at various
times for 7;=0. The initial potential locally on the spin up
generates simultaneously spin and charge wave packets and
then the wave packets will split into two parts and propagate
to opposite directions, respectively.’® Since the potential
strength P we took is not large, the spin and charge density
of this wave packet is very small, but the currents defined in
Eq. (2) show the propagation of this wave packet very clear.
In Fig. 2(a), we show the current distribution at a time before
the spin and charge reach the special bond. The split of the
two peaks indicates the different speeds of spin and charge
excitations, so that the spin-charge separation is observed
clearly. Next we will see clearly from the figure the charge
current goes through the special bond almost freely, while
the spin current is blocked by the special bond. A spin cur-
rent reflecting at the special bond is shown in the figure by
its value being changed from positive to negative. The
change in charge currents from negative to positive indicates
the charge reflection at the left end since we use an open
boundary condition for the chain.
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FIG. 2. (Color online) The spin (solid line) and charge (dashed
line) current in the spread of a wave packet with P=0.8¢,, [,=1,
1,=62 for U=81t,. The location of this special bond is indicated by
a double dashed (blue) line. Positive (negative) values imply the
current flows to the right (left). The dashed (red) arrow indicates the
charge transmitted through while the solid (black) one the spin re-
flected from the special bond.

We argue that, in the following, the spin-current blockade
we observe here only happens in a strongly correlated sys-
tem. It is different from the “spin blockade” effect,? which is
merely spin-related Coulomb blockade. To understand the
phenomenon we observed above, we consider the large U
limit of the Hubbard-type model in Eq. (1), which leads to
the so-called #-J model H, ;=H,+H,, where H, is the hopping
term in Eq. (1) and

L '

H;=- 5 E f?j??kcizc,jsan”_fic s Chs’ (4)

ijkss’

with 7;,=1;;,,6,j.1+1,_; ;651> This model works on the
space that has projected out all configurations with at least
one doubly occupied site for a less-than-half filling system
and is responsible for the low-energy excitations of the
model in Eq. (1). Tt is well known that the hopping term H, is
responsible for the charge excitations while H; controls the
spin excitations, and that for the usual Hubbard model, H;
corresponds to a Heisenberg spin chain. Writing

¢ o — 1 + o —pt
Si- 5= SiSj+ (5157 + 7)), (5)

the second term is responsible for the spin-exchange process
that is necessary for an S, spin current. Based on H, in Eq.
(4) from the large-U expansion, we show the spin-exchange
process in Fig. 3, in which there is a virtual intermediate
state, so electronic hoppings for both spins are necessary for
the process via a virtual state. Then it is clear that spin cur-
rent is blocked at the special bond when ¢ =0 since only
spin-up electrons can hop across the special bond.

Now, we come to the calculation of spin and charge cur-
rents under a spin-dependent voltage bias, for which we con-
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FIG. 3. A spin-exchange process that is necessary for the spin
current in the strong-interaction limit.

sider the system of a Hubbard chain with a special bond
attached with two ideal leads at its two end, which is de-
scribed by the following Hamiltonian:

H=Hg+ Hicaqa + Hin (6)

where Hy has been given in Eq. (1) and the summation over
site index runs from 1 to Lg with Lg being the size of the
Hubbard chain, H.,g=H;+Hy and

Hy=-1 > (Ciaci:1,0+h~c~)_ > Vi (7

i,oea Loea

with a=L or R and the sign * taking —(+) for a=L(R), and

Hip=- toz (c;'j,(,c],g+6‘£ch+1,a+ h.c.). (8)

o

The spin-dependent voltage bias V, = V(L,— VI; applied at the
two leads turns on at r=0, so that currents appear gradually
at the same time and reach constant values finally. In the
calculation, we take V| =0 and V;=0.1%,, without loss of gen-
erality, to induce both spin and charge currents through the
Hubbard chain. This nonzero voltage bias fixes an energy
scale in the field-theoretical treatment of tunneling in a Lut-
tinger liquid,® which cuts off the renormalization-group flow
of the tunneling probability. The dominant effect found in the
time evolution from this initial condition is the spin blockade
discussed above, but it may be possible by varying voltage
bias to observe the predicted power-law dependence of trans-
mission on voltage bias (or temperature).?

Now we show in Fig. 4 the spin and charge currents at
various times for different Hubbard chain lengths (L) or the
numbers of kept DMRG states (M) in the calculations in-
duced by the spin-dependent voltage bias. First the Hubbard
interaction is switched off for the test of the calculation pre-
cision for a chain of Lg=40 without the special bond. The
corresponding lengths (L—Lg) of ideal leads attached to the
chain has been tested to be long enough so that the results
are sufficiently insensitive to it. The incoming and outgoing
currents are defined as the corresponding currents at the left
and right interfaces according to Eq. (2), respectively. At U
=0, the spin and charge currents are the same since no inter-
action between electrons of different spins exists. A time lag
between the incoming and outgoing currents is observed due
to the spin or charge transportation from the left chain end to
the right one. After some scattering between lead and Hub-
bard chain due to the finite sizes, which shows a weak oscil-
lation, the steady transport is finally reached at r=40(%/1,).

PHYSICAL REVIEW B 78, 193105 (2008)

 (a) i
0.018 . Incoming

RIS
0.012} RSN
E ~.J
g \.\_\.—
> ~.
O 0.006 —— M=64
—--=M=100
Outgoing 4/ =7°°° M=128
0.000 - --M=160

0.008

0.006

0.004

current

0.002

0.000 =3

0.008

0.006

0.004

current

0.002

0.000

15

FIG. 4. (Color online) The spin and charge currents at various
times for different numbers of kept DMRG states (M) or Hubbard
chain lengths (Lg). (a) Both incoming and outgoing spin or charge
currents are shown for U=0 and Lg=40. (b) Only the outgoing
currents are shown for U=8¢, and Lg=40. (c) The outgoing currents
for different chain lengths Lg, and U=8¢, and M =160.

In Fig. 4(a), we also show the results obtained from the
t-DMRG method by keeping various numbers of DMRG
states. It can be seen that the curves obtained when the num-
ber of kept DMRG states (M) is 128 or more are very close
to the exact one (solid lines), while the convergence for the
outgoing current is faster than that of the incoming one, the
reason being that the voltage bias is applied only at the left
interface for convenience in this calculation.

Next, in Fig. 4(b) we show both spin and charge outgoing
currents for a Hubbard chain with the special bond for a
number of different kept DMRG states (M). It is clearly seen
that the convergence for a Hubbard chain is much better than
that of the U=0 chain with increasing the number of kept
DMRG states (M). In a sufficiently long time, it can be seen
that while the charge current passes through the chain the
spin current is blocked and only a little of it passes. This
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FIG. 5. (Color online) The dependence of transmission rates
(see text for definition) on (a) ¢, (U=81;) and (b) U (¢;=0).

result is consistent with the spread of a wave packet studied
above. In Fig. 4(c) we give the currents for different lengths
(Lg). We observe that a Hubbard chain of moderate length
L4(=30-40) is optimal, for a shorter chain is accompanied
by a serious finite-size effect and a longer chain by a large
accumulated error since it takes more time for spin or charge
to travel from one end to the other.

Finally, we give the dependence of spin or charge trans-
port through the Hubbard chain on ¢ and U in Fig. 5. The
transmission rates are defined as the ratio between transmit-
ted and incident currents, where the former is taken from the
average value of the outgoing current at a period when the
current is almost steady and the latter is the same of the
incoming current at the period before the current reaches the
right end. Figure 5(a) shows that the transmission rate
changes little for 7 <0.5, while Fig. 5(b) that the Hubbard
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repulsion U plays a crucial role in the observed spin-current
blockade. When U increases, the charge transmission rate
changes little for U>4t¢,, and the spin rate decreases very
quickly and reaches about 0.1 for U>10¢,, where the spin
current is nearly completely blocked by the special bond.

In the end before summary, we mention the proposal by
Kollath et al?® to observe experimentally the spin-charge
separation in cold Fermi gases, in which the temperature
should be low enough (kzT being much smaller than the
Mott energy gap) to ensure that thermal activation does not
destroy the Mott-insulating behavior. But this is not required
in our case since the Mott gap is zero. Furthermore, an im-
portant advantage is that the spin-current blockade could be
realized by adjusting only one parameter (7,), which simpli-
fies experimental observation.

In summary, we have investigated the spin and charge
transport in a Hubbard chain with a bond of controllable
electronic hopping. We find the spin current can be con-
trolled by this special bond while charge current passes
through the bond freely. It is found that a large Hubbard U is
required for the observed blockade since the spin-charge
separation plays a crucial role in it.
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